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Higher Order Gamow States with Exponential 
Decay 
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We derive Gamow vectors from S-matrix poles of higher multiplicity in analogy 
to the Gamow vectors describing resonances from first-order poles. With these 
vectors we construct a density operator that describes resonances associated with 
higher order poles that obey an exponential decay law. It turns out that this 
operator formed by these higher order Gamow vectors has a unique structure. 

1. I N T R O D U C T I O N  

Resonances in quantum mechanics can be described by poles of  the 
analytically continued S-matrix on the second sheet o f  a two-sheeted Riemann 
surface (Newton, 1982; Goldberger and Watson, 1964a, b; Bohm, 1979, 1980, 
1981, 1993). These poles appear in conjugate pairs below (at zR = ER -- iF/  

2) and above (at z,~ = ER + iF/2) the positive real axis, where the pole at 
zR corresponds to a decaying state at times t --> 0 and the pole at z~ to the 
growing state at t < 0. These poles lead to the description of  the G a m o w  
vectors with energy ER and lifetime 'r = h/ f ' .  T h e  Gamow vectors possess 
all the properties of  resonances, in particular, an exponential decay law and 
a Brei t -Wigner  energy distribution, One can extend this derivation o f  the 
Gamow vectors from first-order poles to S-matrix poles of  higher multiplicity 
(Antoniou and Gadella, 1995; Bohm et al., 1995, 1997). An S-matrix pole 
of  order r at the position zR = ER -- iF~2 on the second Riemann sheet leads 
to a set of  r generalized eigenvectors of  the Hamiltonian of  order k = 0, l, 
. . . .  r - 1, which are Jordan vectors of  degree k + 1 to the generalized 
eigenvalue ER -- iF/2  and which are elements of  a generalized complex 
eigenvector expansion (nuclear spectral theorem in the rigged Hilbert space). 
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The form of this generalized complex eigenvector expansion suggests the 
definition of a state operator (density matrix) for the microphysical decaying 
state from a higher order pole. This microphysical state is not a pure state, 
but a mixture of nonreducible components. In spite of the fact that the kth- 
order Gamow-Jordan vectors have a polynomial time dependence besides 
the exponential, which in the past were always associated with resonances 
from higher order poles, this microphysical state obeys a purely exponential 
decay law. 

Resonances from higher order poles, in particular double poles, were 
already described about 30 years ago (Goldberger and Watson, 1964a, b; 
Newton, 1982; Goldhaber, 1968), but were always associated with an addi- 
tional polynomial time dependence not confirmed in experiment. However, 
operators containing finite-dimensional matrices consisting of nondiagonaliz- 
able Jordan blocks have been discussed in connection with resonances numer- 
ous times in the past (Mondragdn, 1994; Stodolsky, 1970; Lukierski, 1967; 
Dothan and Horn, 1970; Katznelson, 1980; Bhamathi and Sudarshan, 1996; 
Brtindas and Chatzidimitriou-Dreismann, 1987; Antoniou and Tasaki, 1993). 
Using the formalism of the rigged Hilbert space, I. Antoniou and M. Gadella 
derived the Gamow-Jordan vectors, or higher-order Gamow vectors, from 
the higher-order poles of the S-matrix. 

In Section 2 we recall some of the notation (Bohm, 1993; Bohm et al., 
1997) needed for the description of the scattering experiment in the rigged 
Hilbert space formalism. We show how to obtain these hypothetical vectors 
associated with the higher order S-matrix poles and show that they are Jordan 
vectors (Baumgiirtel, 1984; Kato, 1966; Gantmacher, 1959). We derive their 
properties, under the action of the Hamiltonian and their semigroup time 
evolution. In Section 3 we discuss possible operators formed by these vectors 
to represent microphysical states describing resonances. In Section 4 we will 
ask for the converse: Going out from an exponential decay law for the time 
evolution of resonances from higher-order S-matrix poles, what is the most 
general form of the operator formed by dyadic products of higher order 
Gamow vectors? 

2. POLES OF THE S-MATRIX AND GAMOW-JORDAN 
VECTORS 

We recall that in the rigged Hilbert space formalism one uses two 
different space triplets for the set of in-states ~b + e ~_ C ~ C �9 _x describing 
the preparation process of the scattering experiment and the set of observables 
~-  e qb+ C ~ C qb +x describing the registration process (Bohm e ta l . ,  1997; 
Bohm and GadeIla, 1989). The in-state qb +, which evolves from the prepared 
in-state ~b ~n outside the interaction region, is determined by the accelerator. 
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The so-called out-state q/- (or q/out) is determined by the detector. Iq/~ (q/~ 
is therefore the observable which the detector registers and not a state. The 
S-matrix elements are given by the projection of  the set of out-states {r ~ 
onto the set of observables {q/u,t} (Bohm, 1993) 

(q/out, ~out) = (q/out Sl~/)in) = (q/- ,  (l)+) ~__ ~ d E  ( q / - I E - ) S ( E ) ( + E I ~ b  +) 

Js pecH 
(2.1) 

The vectors IE ~-} ~ a~ • are the scattering states (Dirac kets) and are eigenvec- 
tors of the exact Hamiltonian with energy label E, which can take values on 
a two-sheeted Riemann surface. We choose to ignore all other labels of the 
basis vectors IEZ) ,  since nothing important is gained in our discussion if we 
retain the additional quantum numbers, e.g., the angular momentum quantum 
numbers l and l 3 or the polarization or channel quantum numbers ri. Thus, 
we shall restrict our discussion to one initial channel ri --- riA and one final 
channel ri' = x18 (e.g., rib = ria for elastic scattering), and we shall consider 
the lth partial wave of the riBth channel (Bohm, 1993): i.e., S(E) ~ SpB(E). 
We consider the model in which the S-matrix is analytically continued to a 
two-sheeted Riemann surface in the energy representation (Bohm, 1993) and 
in which the S-matrix S(to), toeC,  has one rth-order pole at the position 
to = ZR(ZR = ER -- iF/2) in the lower half-plane of  the second sheet (and 
consequently there is also one rth-order pole in the upper half-plane of the 
second sheet at to = z*). In this paper we will not discuss the pole at z*, as 
it leads to r growing higher-order Gamow vectors, and the correspondence 
between the growing and decaying vectors is just the same as for first-order 
pole resonances (r = 1). The model that we discuss here can easily be 
extended to any finite number of finite-order poles in the second sheet below 
the positive real axis. 

The unitary S-matrix of a quasistationary state associated with an rth- 
order pole at zR = ER -- iF~2 in the lower half-plane of the second sheet 
(denoted by II) is represented by (Bohm, 1993, Section XVIII.6) 

Sll( to) = eZi~R(~ e 2i't(~ (2.2) 

where ~g(to) = r arctan [FI2(ER - to)] is the rapidly varying resonant part 
of  the phase shift, and ~/(to) is the background phase shift, which is a slowly 
varying function of the complex energy to. Here r is a dimensionless quantity 
that, due to the analyticity properties of the S-matrix (Bohm, 1993, Section 
XVIII.6), takes integer values, where r > 0 leads to a decaying resonance 
of order r, and r < 0 to its corresponding growing state. Using the identity 

arctan ER - to 2 
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one can rewrite Sli(O~): 

•oa - ( E e  i F / 2 ) ]  = eZiv('n) + t = 1  - -  e2i"/(~) 

(2.3) 

We insert this into (2.1) and deform the contour of integration ~_ through 
the cut along the spectrum of H into the second sheet (Bohm, 1979, 1980, 
1981, 1993). Then one obtains 

++) = ~ d,~ (~-J,,,-)S.(,o)(+~,l,I, +) (0-, 
dTg 

r ( )  
+ ~] r (_il.)~ 

~=o n + l  

e2i.~(w) 

• ,--, dto (O-lto-) (co _ ZR)n+I  (+(.oil :D*>, Im(o~) < 0 (2.4) 

The first integral does not depend on the pole and is called the "background 
term." The contour ~_ can be deformed into the negative axis of the second 
sheet from 0 to - % x :  

l 
-a~ll 

(~ -, 0 +) = dE (t~-!E-)SH(E)(+E!O~ +) + (t~-, q5 +)wr. (2.5) 
m 

We will not need to further investigate the background integral in this presenta- 
tion. For the higher order pole term (t[,-, dp+)wr, we obtain, using the Cauchy 
integral formula 

f (o~) 2"rri f(")(z) 

where f~ --= d"f(z)/dz": 
r r) ( 

(*- '~b+)Pv: .~o(  + 1  ( - iF)"+t{-2rr i )  (O-Ito-)e2i'r 
n \ "! / /~,=z. 

(2.6) 

where (-'-)~")_-zR denotes the nth derivative with respect to to taken at the value 
r = ZR . 

Since the kets ko-) are (like the Dirac kets [E-)) only defined up to an 
arbitrary factor or, if their "normalization" is already fixed, up to a phase 
factor, we can absorb the background phase e 2iv~') into the kets leo-) and define 

[tO v)  ------ I ~ - > e  2i'v('~) (2.7) 
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Note that this phase is not trivial, e.g., IE*) = IE-)SI~(E) = IE-)e 2i~n(E) e 2iY(~, 
except for the case when the slowly varying background phase ~/(to) is constant 
and the I~ v) are identical with Ito-) up to a totally trivial constant phase 
factor. In general, (2.7) is a nontrivial gauge transformation. We will keep 
the phase ",/in our Gamow vectors, but not investigate their properties further. 
The results of this section are true also for the case when Iz~) (k) are exchanged 
by Lz~) (k). But as we cannot just ignore the existence of the background 
integral in (2.4), we have to keep in mind that their existence is not irrelevant, 
if one deals with poles of order r > 1. 

Taking the derivatives, we write the pole term as 

r - I (  ) l( 2,rri~ 
(d,J-, t~+)p.T. -~- ~ r (_iF),,+ 

,, + 1 / 

where we denote the nth derivative of the analytic function (~-Iz "~) by 
(6-1zYy =) with value (6-1z~) C'~ at z = ze. Since (qJ-tE-) ~ S ~ f3 ~2_, i.e., 
element of the Schwartz space and of Hardy class (Duren, 1970; Hoffman, 
1962; Bohm and Gadella, 1989), it follows that (~-Iz~) (n) is also an analytic 
function in the lower half-plane of the second sheet, whose boundary value 
on the positive real axis (#-IE~) (=) e 5 ~ f3 ~L.  Analogously, we denote by 
(=)(§ +) the nth derivative of the analytic function (+zlqb+). Again, (~)(+zlqb +) 
is analytic in the lower half-plane with its boundary value on the real axis 
being (")(+Elqb +) ~ 5 ~ f3 3qz_. The rth-order pole is therefore associated with 
the set of r generalized vectors 

zR,,-~\(o), lz~)O), . �9 �9 Iz~> (k), . . .  , IZVR) (') (2.9) 

For the first-order resonance pole this, of course, reduces to the single vector 
Iz~) = Iz~) (~ in agreement with Bohm (1979, 1980, 1981, 1993). 

We can now establish the complex basis vector expansion in analogy 
to the Dirac basis vector expansion [nuclear spectral theorem in the rigged 
Hilbert space (Gel'fand and Vilenkin, 1964; Bohm and Gadella, 1989)]. If 
we return to the complete S-matrix element (2.4) and insert the pole term, 
we get 

(t~-, ++) = dE (+-IE+)(+EI~b +) 
-Io 

r 

~=0 n + 1 ~ . t  (- iF)~ k=0 
(2. lO) 
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Omitting the arbitrary ~ -  �9 qb. and rearranging the sums in the second term, 
we obtain the complex basis vector expansion for an arbitrary qb § �9 dO_, 

~ --~11 r-- I 
++ = dEIE~'><+EI++> + ~ bklz~> (k) (2.11) 

JO k=0 

where the coefficients bk are given by r()(:) 
bk = ( - 2 w F )  ~ r ( - i F ) "  

. = k  n + 1 n! ("-l')(+zRlqb'-) (2.12) 

This complex generalized basis vector expansion is the most important result 
of our irreversible quantum theory (as is the Dirac basis vector expansion 
for reversible quantum mechanics). It shows that the generalized vectors (2.9) 
(functionals over the space qb+) are part of a basis system for the qb + e tl)_ 
and form together with the kets IE*>, -~c n < E ---< 0, a complete basis system. 
The vectors (2.9) span a linear subspace At. R. C d# +x of dimension r: 

I r--] t ~t: R= ~ ~=  ~ ~klZ~>~k~; ~ �9 C C ~ 
k=0 

(2.13) 

If there are N poles at zRi of order r,, then for every pole there exists a linear 
subspace AtzR ' C �9 ~_. 

Note that the label k of the higher order Gamow vectors is not a quantum 
number in the usual sense. Basis vectors are usually labeled by quantum 
numbers associated with eigenvalues of a complete system of commuting 
observables (Bohm, 1993, Chapter IV). But there is no physical observable 
to which the label k is connected. Therefore, the different tZ/~> (k) in the subspace 
~zR do not have a separate physical meaning. 

Now that (2.11) has established the generalized vectors (2.9) as members 
of a basis system (together with the rE+); - ~ l l  < E <-- 0) in �9 x, we can 
obtain the action of the Hamiltonian H by the action of the operator H x on 
these basis vectors. We will write this Hamiltonian in terms of its matrix 
elements in this basis. For this purpose we replace the arbitrary ~ -  �9 q~. in 
(2.10) by ~ -  = H+- ,  which is again an element of  q~., and we find (Antoniou 
and Gadella, 1995; Bohm et al., 1997) 

(~-[Z~> (~) -- <HO-Iz~> (*) = <d~-IH • PZ]> (k) 

= ZR<O-lz~> fk) + (tlJ-Iz~> Ck-'), k = 1 . . . . .  r - 1 

, ~  , .  .~> = : ~ ( , - I z ~ >  ~~ (2.14) 
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This can also be written as a set of  functional equations over  q~+: 

H• (k~ = zRIz~8) (k) + klz~) ~k-~), k = 1 . . . . .  r - 1 

H• = zRIz~> (2.15) 

This means that H x restricted to the subspace :ff:R is a Jordan operator  o f  
degree r, and the vectors Iz~) (k~, k = 0, 1, 2 . . . . .  r - 1, are Jordan vectors 
of  degree k + 1 (Baumg~irtel, 1984; Kato, 1966; Gantmacher ,  1959). They 
fulfill the generalized eigenvector  equation (Lancaster  and Tismenetsky,  1985; 
see also . . . )  

( H  • - ZR)k-r'IzVR>(k) -= 0 (2.16) 

Since, according to (2.11), the basis system also includes the IN+), - % 1  < 
E -< 0, we indicate this by a continuously infinite diagonal matrix equation 

( (Hd/- [E +)) = ( (O-IHIE+))  = (E~(<'h-IE+)) (2.17) 

where ((@ -IE+)) indicates a continuously infinite column matrix. Then (2.14) 
can be rewritten as 

(+-IHXlz~> (~ 

<,-~H• 

[ZR 0 0 "'" 0 

1 ZR 0 "'" 0 

0 2 ZR "'" 0 ! 
! -" . .  " . .  : 

0 0 "" r -  1 ZR 0 

o .-- o (E) ]  
/ 

/ 

0 / <,-Iz~>~"~ 

<,-Iz~> ~r- , 

i <~-le + > 

(2.18) 

In this matrix representation of  H x, the upper left r • r submatrix associated 
with the complex eigenvalue ZR is a (lower) Jordan block of  degree r. One 
can attain the standard form of  a Jordan block with l ' s  on the lower diagonal 
by s imply choosing the normalization 

I I~)lk) and ~t)(+ZRr-~ a~(+ZRI l IZ~)(k) --+ ~ ~ l7. (2.19) 
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Next we discuss the time evolution of the higher order Gamow vectors. 
We replace the arbitrary t~- E qb+ in (2.10) by ~ -  = eimt~ -.  We recall that 
eim needs to be a continuous operator with respect to the topology "r,~+ of 
the space ~+, and its values e izt need to be holomorphic in all qb.. Its conjugate 
(eint) • which acts on the vectors Ito-) ~ qb, is only defined for positive 
values of the parameter t (semigroup time evolution), 

(eiHtdd-lo~ -) = (~-I(eiHt)• = e-i '~ t >- 0 (2.20) 

for all ;co-) E �9 x. Then 

= . ( e i H q l l - l t o - ) e 2 i ' r  ( e i H t t ~ - l Z ~ ) ( k )  d~ . . . .  :R 

_ d ~ (e-i,ot(~-io-)e2i.~(~,)),,=., 
d~k 

= e -izRt ~ (- i t )e(d~-Iz~)  (k-p) (2.21) 
p=0 

This can be written as a functional equation as 

(eim)XJz~)(k) = e -i=R' ~ ( - i t ) t -P l z~ )  ~') (2.22) 
p=0 

In the same way one derives for the complex conjugate 

The same formulas apply also to the vectors Pz~) ~k) and (~ with background 
phase 3, = 0. It is important to note that the time evolution operator (eim) x 
transforms between different Iz~) (k), or different Iz~) Ck), k = 0, 1 . . . . .  n, that 
belong to the same pole of order r at z = ZR, but the time evolution does not 
transform out of ~t:R. 

3. STATES FROM HIGHER ORDER GAMOW VECTORS 

Gamow states of zeroth order with their empirically well-established 
properties (exponential time evolution, Breit-Wigner energy distribution) 
have been abundantly observed in nature as resonances and decaying states. 
Theoretically, there should be no reason why quasistationary states [i.e., states 
that also cause large time delay in a scattering process (Bohm, 1993, Chapter 
18)] associated with integers r > 1 in (2.3) should not exist. However, no 
such quasistationary states have so far been established empirically. One 
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argument against their existence was that the polynomial time dependence, 
which was always vaguely associated with higher order poles (Goldberger 
and Watson, 1964a, b; Newton, 1982; Goldhaber, 1968), has not been observed 
for quasistationary states. The question that we want to discuss in this section 
is whether there is an analogous physical interpretation for the higher order 
Gamow vectors as for the ordinary Gamow vectors, namely as states which 
decay (for t > 0) or grow (for t < 0) in one preferred direction of time 
("arrow of time") and obey the exponential law. 

In analogy to von Neumann's definition of a pure stationary state using 
dyadic products If)(fl  of the energy eigenvectors If) in Hilbert space, micro- 
physical Gamow states connected with first-order poles can be defined as 
dyadic products of zeroth-order Gamow vectors (Bohm, 1979, 1980, 1981, 
1993; Bohm et al., 1997), 

W ~~ = Iz,~)(-zRI (3.1) 

[Note that this definition is not related to the scattering background phase ~/ 
which entered in (2.7).] The time evolution of this Gamow state is exponential, 

WG(t) -- (em,)• im 

= e-iZRqZ~)(-zRleiZ~ 

= e-i(ER-i(r/2))tlz~)(-zRlei(ER+i(F/2))t 

= e-rtWc'(o), t >-- 0 (3.2) 

Mathematically, equation (3.2) is understood as the functional equation of 

( + - I W G ( t ) I ~ - ) = e - r t ( ~ - I W G I ~  - )  for all ~ - ~  ~+ and t ~ 0  

This shows how important it is in the RHS formalism of quantum mechanics 
to know what question one wants to ask about a microphysical state when 
one makes the hypothesis (3.1). The vectors t~- ~ 4p+ represent observables 
defined by the detector (registration apparatus), and therefore the operator 
W G represents the microsystem that affects the detector. Therefore the quantity 
(~-IWGIt~ - )  is the answer to the question, What is the probability that the 
microsystem affects the detector? 

If the detector is triggered at a later time t, i.e., when the observable 
has been time translated 

I~-)(~-I ---) eiH'lqJ-)(~-Ie -iHt = IqJ-(t))(~-(t)t (3.3) 
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then the same question for t -> 0 has the following answer: The probability 
that the microsystem affects the detector at t > 0 is 

<~-(t)[WGIt~-(t)) = <eititt~-iWGleimt~ -)  

= <t~-I (e  iHt) • WGeil l t l  t~ - > 

= e-V'(t~-IWGl+ -)  (3.4) 

This means that (3.4) is the probability to observe the decaying microstate 
at a time t relative to the probability <qJ-IwGI+ -)  at t = 0 [which one can 
"'normalize" to unity by choosing the appropriate factor on the right-hand 
side of (3.1)]. 

The question that one asks in the scattering experiment is different. 
There the pole term (P.T.) of (2.5) for r = 1 describes how the microsystem 
propagates the effect which the preparation apparatus (accelerator, described 
by the state ~b § causes on the registration apparatus (detector, described by 
the observable ~- ) .  This involves both the observables ~ -  ~ qb§ and the 
prepared states (5 § ~ qb_, and one would ask the question: What is the 
probability to observe ~-( t )  in a microphysical resonance state o f  a scattering 
experiment with the prepared in-state qb+? 

In distinction to the decay experiment, where one just asks for the probabil- 
ity of ~ -  ~ qb§ in the resonance scattering experiment one asks for the 
probability that relates + -  ~ qb§ to ~b § ~ ~_  via the microphysical resonance 
state. Therefore the mathematical quantity that describes the microphysical 
resonance state in a scattering experiment cannot be given by IZ~)<-ZR l, but 
must be given by something like Iz~)<§ The probability to observe +-  in 
the prepared state qb § independently of how the effect of qb § is carried to the 
detector ~- ,  is given by the S-matrix element (2.1), I(~-, qb§ ~. The probability 
amplitude that this effect is carried by the microphysical resonance state is 
then given by its pole term (~-,  qb§ In analogy to the decay experiment, 
one can also compare these probabilities at different times. For this purpose 
one translates the observable +-  in time by an amount t -> 0, 

t~- ~ ~-( t )  = ein't~-; t >- 0 (3.5) 

Physically, this would correspond to turning on the detector at a time t --> 0 
later than for t~-. One obtains 

d) )P.X. --27rF(eiH'~-Iz~n)(+ZRICb +) (t~-(t), + = 

= -2"rrFe-izRt<qJ -Iz~)<+zRIqb +) (3.6) 

= e - i E m e - F t / 2 ( ~  - ,  dp +)P.T. 

This means that the time-dependent probability, due to the first-order pole 
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term, to measure the observable +-(t)  in the state qb § is given by the exponen- 
tial law 

I(eiHtqj - ,  r +)p.T.I 2 = e-rq(qJ -, qb ~)p.r.I ~- (3.7) 

This is as one would expect if the action of the preparation apparatus on the 
registration apparatus is carried by an exponentially decaying microsystem 
(resonance) described by a Gamow vector. 

Thus we have seen that there are two ways in which a resonance associ- 
ated with a first-order pole of the S-matrix (r --- 1) can appear in experiments, 
and therefore there are two different forms to represent the decaying 
Gamow state: 

in a decay experiment: Iz~)(-zRI (3.8a) 

in a scattering experiment: Iz~)(+z~[ (3.8b) 

An analogous statement holds for the Gamow states associated with the pole 
in the upper half-plane. The first representation is the one used in the S- 
matrix when one calculates the cross section; the second representation is 
the one used when one calculates the Golden Rule (decay rate). In contrast 
to yon Neumann's formulation, where a given state (representing an ensemble 
prepared by the preparation apparatus) is always described by one and the 
same density operator I f ) ( f l ,  the representation of the microphysical state 
in the RHS formulation depends upon the kind of experiment one performs. 
That a theory of the microsystems must include the methods of the experi- 
ments has previously been emphasized by G. Ludwig. 

We will now discuss the mathematical representations of Gamow states 
associated with higher order poles of the S-matrix (r > 1) under the two 
aspects above. In analogy to the case for r = 1, we conjecture that the 
representation for the microphysical system in the resonance scattering experi- 
ment is already determined by the pole term (2.8), and is therefore given by 

r L() 
W~r. = 2"rrF ~ r 

,,=0 n + l  

- ( )  = 2~F  ~ r 
~=o n + l  

(--i)n Fn "~ (k) lZVe)Ck) ~"-k)(+ZR k~=o 

_ .  n (n) ( 0 Wp.-r. (3.9) 

up to a normalization factor which will have to be determined by normalizing 
the overall probability to 1. Here we define the operator 

~'r. = n---(. Iz~) r C"-k)(~-ZRt (3.10) 
k=0 

We hypothesize that the microphysical state from higher order poles connected 
with the decay experiment has the same structure as the microphysical state 
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(3.9), which is certainly in agreement with the first-order case (3.8a) in 
comparison with (3.8b), r--,( 

W = 2"rrF ~ r 
n=O rt q- 

1 ( - i )n  ~.v ~] IZR) ~k) ("-~)(-ZsI 
k=O 

r l ( )  
= a ~ r  ~ r ( _ i ) ~ l ,  lX~ ~ (3.11) 

~=o n + l  

For r = I, this reduces to (3.8a). It should be mentioned that mathema- 
tically there is an important difference between (3.9) and (3.11) because the 
(+-Iz'~) ~) ~"-~)(+zl~, +) are analytic functions for z in the lower half-plane, 
whereas the (~i-lz-) ~k) c"-~)(-zl~-) are not. Whether the microphysical state 
of the (hypothetical) quasistationary microphysical system is always repre- 
sented by the mathematical object (3.11) or whether also each individual 

W~n) = n! Iz~) Ck~ (n-~)(-ZRI, n = 0, 1 . . . .  r -- 1 (3.12) 
k=0 

has a separate physical meaning cannot be said at this point. 
This means that the conjectural physical state associated with the rth- 

order pole is a mixed state W, all of whose components W ~n), except for the 
zeroth component W ~~ cannot be reduced further into "pure" states given 
by dyadic products like Iz~) ~ ~)(-zRI. This is quite consistent with our earlier 
remark that the label k is not a quantum number connected with an observable 
(like the suppressed labels b2 . . . . .  bn). Therefore a "pure state" with a definite 
value of k, like Iz~) ~) ~k)(-ZRI, k --> 1, does not make sense physically. A 
physical interpretation could only be given to the whole r-dimensional space 
.kl, zm (2.13). The individual W ~n), n = 0, 1, 2 . . . . .  r - I, act in the subspaces 
~ ] )  C ~:R which are spanned by Gamow vectors of order 0, 1 . . . . .  n 
[Jordan vectors of degree n + I, i.e., (H • - zR) n+l aft~] ) = 0]. Here the ques- 
tion is whether there could be a physical meaning to each W ~n) separately, or 
whether only the particular mixture W given by (3.11) can occur physically. 

Though the quantities Iz,~) ~) ~k)(-ZRI will have no physical meaning, even 
if higher order poles exist, they have been considered in the literature (Anto- 
niou and Gadella, 1995; Bohm et al., 1985); Goldberger and Watson; Newton, 
1982; Goldhaber, 1968), and their time evolution is calculated in a straightfor- 
ward way: 

( eiHt) • IZ~) (k) (k)(-ZRl eiHt 

= e - r '  ~ ~ (--it)l(it)mlz~) (k-t~ (k-m~(-ZRI (3.13) 
1=0 m=O 
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This state operator shows the additional polynomial time dependence that 
has always been considered an obstacle to the use of higher order poles for 
quasistationary states. A polynomial time dependence should have shown up 
in many experiments. 

We now derive the time evolution of the microphysical state operators 
(3.11) from higher order poles of the S-matrix using the time evolution 
obtained for the Gamow-Jordan vector. It will turn out that the operator 
(3.12) and therewith (3.11) have a purely exponential time evolution. Inserting 
(2.22) and (2.23) into 

W("'(t) = (eim)xW(meim = ~ ( k )  (eim)xtz~)(k) 

we get 

t _ > O  

(3.14) 

and one gets 

W(,)(t) = e -r ,  -~. ]ZR) (n-m) (m)(-ZR [ __-- e-r'w(n)(O), 
m=0 

t - 0 

(3.15) 

W(,)(t ) = e,=R,e,Z , ~ ~ n - k 
n! k% t=o m=O m 

• (--i t)k-t(i t)n-k-"lz~)(t)  (m)(-ZR I 

After reordering the summations and the terms in the binomial coefficients, 
one can separate out the dyads, 

Wtn)(t) = e -r '  ~ l IzR)~t) ~r~>(-ZRI 
m=0 1=0 

) ~ n - m  - I  
k=t k -- l (--i t)k-t(i t)n-k-m 

Since the indices labeling the Gamow-Jordan vectors do not depend upon 
k, the sum over k may be performed using the binomial formula 

~ n - m - l (__it)k_l(it)n_k_ m = (it -- it) "-m-t  
k=t k - l 

(~ for l = n - : }  5t~-, ,  
for 14: n 
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This means that the nonreducible (i.e., "mixed") state operator W (n) of (3.12) 
has a simple exponential semigroup time evolution, and also that, since the 
operator W of (3.11) a linear combination of the W Cn), 

W(t) --- (eiHt)• im = e-rtW, t >- 0 (3.16) 

It turns out that the operator (3.12) is the only operator in ~ ] )  formed by 
the dyadic products Iz,~) ~') (n(-zR[ with m, l = 0, I . . . . .  n, which has a 
purely exponential time evolution, thus being distinguished from all other 
operators in .kiWi ). Thus we have seen that the state operator which we conjec- 
ture from the rth-order pole term describes a nonreducible "mixed" micro- 
physical decaying state which obeys an exact exponential decay law. 

In analogy to (3.6), one can also calculate the time evolution of the 
operators (3.9) and (3.10), but their time evolution will always have an 
additional polynomial time dependence besides the exponential. 

4. GENERAL FORM OF THE EXPONENTIALLY DECAYING 
GAMOW STATE 

In this section we discuss the converse of the above reasoning, where 
we conjectured the density operator for higher order decaying Gamow states 
and derived a purely exponential time evolution. We ask the question: If we 
require exponentially decaying time evolution for a Gamow state operator 
formed by dyadic products of vectors in AtzR, what is the most general form 
of such an operator? 

We denote the most general form of W of finite dimension j ~ N by 

J J 
W~(O) = ~ ~ AhklZ~) (k) (h)(-ZRI (4.1) 

k = 0  h = 0  

with arbitrary coefficients Ahk. We want to change the order of summa- 
tion from the states of the form Izk-) (k) (h)(-ZRI to the states of the form 
Iz~) ~) ("-k)(-ZRI. Changing the label h = n - k, we write this sum as 

j j+k 

W~(O) = ~ ~] A._,,,Iz~) (k) ("-k)(-ZRI (4.2) 
k = 0  n=k 

Switching the order of k and n divides (4.2) into two sums, 

j j+t j n 2i j 
E E = E E + E E (4.3) 
k=O n=k n=O k=O n = j + l  k=n- j  

We define W~j ~) ---- W~) + W'~) such that 
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W(~) = ~, A,,-k.klz,~) (k) (n-k)(-ZRI (4.4) 
n = 0  k=0 

2j j 

W(~) = 2 2 a,-k.ktZR) (t) ("-k)(-ZRI (4.5) 
n=j+ 1 k=n-j 

In the following, we calculate the coefficients of W(~) and give an argument 
why this suffices to conclude that the coefficients of W~) all turn out to be zero. 

The time dependence of W ~" is given, using (2.22) and (2,23), by 

WT) t s = r~iH,~xw7 ~,'tr \~  ) vv ( j ) c  

J 
---" s ~ An-k,k(eiHt)• (n-k)(-zRleiHt 

n = 0  k=0 

=- e-Ft Z An-k,k n -- k 
n = 0  k = 0  / = 0  m = 0  ##'t 

(--it)k-l(it)n-k-mlZ~)(l) (m)(-ZR I 

Changing the order of the summations, 
j n - k  j n - t  

n=0 k=0 l=0 m=0 n=0 /=0 k=l ra=0 

j j n n-k j j n-I n-m 

- = 2 2 2  2 = 2 2 2 2  
l=0 n=l k=l m=0 l=0 n=l rn=0 k=l 
j j - l  j n-ra 

= ~ 2 2 2  
/=0 m=0 n=l+ra k=l 

allows the dyadic products, which are linearly independent operators, to be 
factored out of the sums over terms in which they appear as common factors: 

i j-t ~ ,1-,1 ' ]lfk~fn-k)m 
W~)(,) = e-rt 2 2 k~=l An-k,k 

,oo~=o o=,+.  , z , ,  

X (--it)k-t(it)"-k-mlz~) (t) (m)(-ZRI 
j i - I  

= e - r t ~  2 IZR) (/)(m)(-zRI 
/=0 m=0 

~ fk~f,, - ~) • o=,+,.~; ~, A ' - " k t , ) t  ' m (--it)k-l(it)~-k-~ 
j j - I  j 

= <-~'E ~] iz~)<')<m)(-z.i 2 (iO " - - - I  
l=0 m=0 n=l+m 

• 2 An-k,k ( - 1 )  ~-t 
k=l m 
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The operator W~'(t) will decay according to the pure exponential e -rt 
if and only if all terms involving additional powers o f  t cancel. All terms 
involving additional powers o f  t will cancel if and only if the coefficients 
A.-k,k satisfy the conditions 

O =  ~ An-k.k l m 
k=l 

for 
l e  {0 . . . . .  j -  1} 
m e { O  . . . . .  j - l - l }  
n E { m + l +  1 . . . .  j }  

(4.6) 

The simplest o f  these conditions are those for which n = m + l + 1, i.e., 
those for which m = n - l - 1, because they are the only conditions that 
involve sums over  only two values of  k: 

0 = ~ An-k, k 1 n - l - 1 ( -  1)k-/ 
k=l 

= A.-i,t n l 1 - A,,.--/-Ij+I for - -  - -  ~ { 0  . . . . .  n - - l }  

or, equivalently, 

An-k+l.k-1 n -- k = An-k.k k - 1 for ~ {1 . . . .  " n} 

or, equivalently, 

= (n - k + 1)!(k - 1)! f n  ~ {1 . . . . .  j} 
A.-k~ (n k) !k! A.-k+ l.k- I for - [ k  ~ { 1 ,  , n }  

These conditions relate pairs o f  coefficients A.-~,k having the same values 
of  n and successive values o f  k. For fixed n a { I, 2 . . . . .  j }, they may be 
used recursively to show that An-k,~ must equal A.,0 multiplied by the binomial 

coeff icient(k)=-n' /[k!(n-k)!]:  

[,: n O,] 
2)! 2.1 n 1)! 1! An,0 

(n k)! k! An,o = Ano for (4.7) 
- " e { 1  . . . . .  n }  
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Substituting this result into the full set of conditions (4.6), using the identity 

(nk)(kl)(nmk)= ( n ) ( n l m ) ( n - - k m l l  ) 

and then using the binomial formula gives 

O=A..o  ~ n - k  (_1)~_ t k=l m 
=An,o(n)(nlm ) 

=A,,,o(n)(nlm ) 

=An,o(n)(nlm ) 

n~m (rl -- m -- l) k - l 

( l  - 1)" 

=A. ,o~m)~  ) n  m On for ~m e {0 . . . . .  j -  1 - l }  
l tne {m+l+ 1 ..... j} 

which shows that the remaining conditions are automatically satisfied by 
(4.7) without placing any further conditions on the coefficients An,o. The 
coefficients A..o, for n e { l . . . . .  j }, and also the coefficient Ao,0 remain 
completely arbitrary. 

We conclude that a linear combination of dyadic products 
Lz~) (/) ~'~(-ZRI decays according to the pure exponential e -r '  if and only if it 
is of the form 

~a,,,O~(k) lZ~)~k)~"-k'(-z~l (4.8) 
n = 0  k=0 

with arbitrary coefficients A,,0. 
Now, coming back to the argument at the beginning of this section: We 

have shown that for arbitrary j ,  the operator W(~) depends only on the choice 
of the coefficients A,,.o. Since j was chosen arbitrarily, we can also take an 
operator W e of dimension 2j  such that it contains at least all the terms 
belonging to the operator W~i[] ) of (4.1) and some additional terms which we 
set to zero by the choice of the coefficients Ahk = 0 for h, k > j, 

W~)= W~j) with Ahk=0  for k > j  or h > j  

2J 2j-k 
= Z ~ AhklZR) Ik) (h)(-ZRI with Ahk ~- 0 for k > j or h > j 

k=0 h=0 
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(4.9) 
If for n > j the A,,,0 = 0, then we know that, according to (4.7), all the other 
terms A,-k.k are zero. Since they make up the operator W~'~) of (4.5), we 
conclude that the coefficients of W~j~ are zero, as demanded above. 

Comparing (4.8) with arbitrary coefficients A,,.0 to the Gamow state 
operator (3.11) suggested by the pole term, one sees that the structure is the 
same wi th j  = r -  1 and 

A,o  r(r) n + 1 ( - i ) "  F~ n! (4.10) 

5. CONCLUSION 

Gamow vectors that can describe resonances and decaying states from 
first-order poles of the S-matrix have been known for two decades. In this 
paper, we discussed their generalization to Gamow vectors describing reso- 
nances from higher order S-matrix poles. This led to a set of r higher-order 
Gamow vectors associated with a pole of multiplicity r which are Jordan 
vectors to a self-adjoint Hamiltonian with complex eigenvalue ER -- iF~2. 

They are basis elements of a generalized eigenvector expansion, which sug- 
gests the form of  a microphysical state associated with this higher order 
resonance pole. This microphysical state is a mixture of nonreducible compo- 
nents, and in spite of the fact that the higher order Gamow vectors have an 
additional polynomial time dependence, this microphysical state obeys a 
purely exponential decay law. We showed that this state operator has the 
same structure as the most general form constructed from decaying higher- 
order Gamow vectors that leads to an exponential decay law. It has been 
shown that Jordan blocks arise naturally from higher order S-matrix poles 
and represent a self-adjoint Hamiltonian by a complex matrix in a finite- 
dimensional subspace contained in the rigged Hilbert space. Although higher 
order S-matrix poles are not excluded theoretically, there has been very little 
experimental evidence for their existence, because they were always believed 
to have polynomial time dependence. Our results suggest that the empirical 
objection to the existence of higher order poles of the S-matrix does not rule 
out the possibility of exponentially decaying states constructed from higher 
order Gamow vectors. 
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